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Chorin (J. Comput. Phys. 27, 428 (1978)) applied a random vortex sheet method to the 
problem of incompressible boundary-layer flow with a uniform external velocity, U(x) = Ci,. 
The application of the method is here extended to the case of an external flow field of the form 
U(x) = U,,xm, where m is a real number. The method generates time-dependent solutions to 
the Prandtl equations and these non-similar solutions, in their temporal mean, are compared 
to the corresponding similar solutions of the Falkner-Skan equation. A visualisation of the 
spatial structure of the velocity field in the boundary layer is obtained numerically for various 
values of m. ‘0 1989 Academic Press, Inc. 

1. INTRODUCTION 

Chorin [ 1 ] introduced a random vortex sheet method which provides a grid-free 
solution procedure for boundary- layer flow. The time evolution of such flow is 
modelled by the translation of Lagrangian vortex sheet elements in the field they 
collectively induce. The effects of viscosity are represented by a stochastic model: a 
random walk displacement is imparted to each element at each time step. The 
no-slip condition at the boundary is effected by the creation of a vortex sheet there 
at each time step. 

The dynamics of 2-dimensional laminar incompressible flow in a boundary layer 
can be derived (see Schlichting [2], for example) from the Navier-Stokes 
equations: 

au au au ap 
-&+uY&+vjj= -ay +v($+$) 

together with the continuity equation: 

““+“=o. 
ax ay 
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We consider a solid boundary to coincide with y = 0, with the fluid occupying the 
half-space y 20; x is the coordinate in the stream direction, y the coordinate 
perpendicular to the boundary. The functions u(x, y) and v(x, y) are respectively 
the stream component of the flow and the component of the flow normal to the 
boundary; v is kinematic viscosity. 

The thickness of a boundary layer is proportional to vl’*, thus for slight viscosity 
this thickness is very much smaller than the stream dimensions of the boundary. 
Dimensionally this implies au/+ $ &/ax and au/ax + &jay. Equation (la) can be 
simplified to 

au au au ap a% ~+u&+v~=--&+v@ (2) 

which, with the continuity equation (lc), constitute the Prandtl boundary layer 
equations. 

Dimensional considerations also show that ap/i?y < ap/ax. By setting dp/ay = 0, 
Eq. (la) becomes decoupled from (lb) and a solution to Eq. (2) can be found 
without reference to Eq. (lb). This procedure amounts to making the assumption 
that the pressure gradient across the boundary layer is negligible. 

The boundary conditions associated with the velocity field (u, v) are those consis- 
tent with a boundary that is impermeable and one at which a no-slip condition is 
satisfied, i.e., 

v(x, 0) = u(x, 0) = 0. 

Away from the boundary an external flow is imposed such that 

lim u(x, y)= U(x), 
.” - co 

where U(x) is a prescribed velocity field. Additionally, the time-dependent equation 
(2) requires an initial condition at t= 0. The point x =0 corresponds to the 
“leading edge” of the boundary, and the flow must also be specified at this point. 

The character of boundary-layer flow has been explored by determining time- 
stationary solutions to (2). The stationary solution to (2) for which the external 
stream is constant, i.e., U(x) = U,,, corresponds to the classic problem of uniform 
main stream flow over a semi-infinite flat plate. Since the pressure field, p, is taken 
to have the uniform spatial structure of the external flow, then Eqs. (2) and (lc) can 
be transformed into the Blasius equation 

f"' + ff" = 0 

with u(x, y) = U, f'(q), and the similarity variable u is given by 

c 1 I/* q=y 3 vx 
The numerical solution to (3) is the well-known Blasius velocity profile. 
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Similarity solutions such as this may be of restricted application. However, since 
they are solutions to an ordinary differential equation they are relatively easy 
to determine numerically and they do offer a valuable point of comparison for 
numerical solutions to non-similar flow problems which are more generally 
governed by the partial differential equations (2) and (1~). 

Chorin [l] compared the velocity profile he derived from a random vortex 
simulation of flow governed by (2) (with U(x) = U,, and v = 10-6) to the Blasius 
solution. The non-similar flow was initiated impulsively at t = 0; after a developed 
velocity profile was established, subsequent time averages of the flow were formed. 
These averages compare well with the Blasius solution to (3) (see Fig. 2 of 
Ref. [ 11). Puckett [3] has investigated in some detail the convergence associated 
with this solution of the Blasius case. He relates the rate of convergence to the com- 
putational parameters of the random vortex sheet method. 

Lewis [4] and Lewis and Porthouse [S] have applied a vortex-in-cell method 
to evaluating Blasius flow (for a viscosity v = 0.05) in which they achieve an 
encouraging simulation of the flow profile. In this application, the vortex-in-cell 
method consists of a fixed grid over the boundary. Although this reduces 
computational effort, it also effectively abandons an important advantage of purely 
Lagrangian vortex methods such as Chorin’s, namely, that the re-introduction of a 
grid will also re-introduce numerical diffusion into the solution. This is an 
important consideration for media of very slight viscosity such as air (v = 10-6). 

Lewis and Porthouse [4] apply their method also to the problem of boundary 
layer flow with streamwise pressure gradients and achieve-at least for favourable 
pressure gradients-some measure of agreement with the corresponding similar 
solution. In this context it would useful to see how the random vortex sheet method 
of Chorin can be extended to the problem of accelerated or decelerated boundary 
layer flow. 

2. FALKNER-SKAN BOUNDARY LAYER FLOW 

A class of similarity solution to (2) can be determined (with au/at = 0) if we 
consider external flows of the particular form 

U(x) = uo xm, (4) 

where m is a real number. (The Blasius case is recovered by setting m = 0.) If we 
express the pressure field as 

then the Prandtl equations can be transformed into the ordinary differential 
equation 

f"'+ff"+--$+ (1 -(f',') =o, 
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where the modified stream function, f, depends only on the similarity variable 

[ 

U,x”(m + 1) L/z 
?=Y 1 2vx . (6) 

The field (u, u) is defined through 

4% Y) = U(x)f’(rl) (7) 

and 

4x, Y)” -[2x~~~1)]“2 {(m-l)‘If’(?)+(m+l)f(?)}. (8) 

The prime denotes differentiation with respect to q. The boundary conditions to be 
satisfied by (5) are 

f(0) =f’(O) = 0 and f'(a)= 1. (9) 

The physical problem described by an external flow (4) is, for m > 0, that corre- 
sponding to a favourable external pressure gradient in the stream direction, and, for 
m ~0, to flow under an adverse pressure gradient. In the parameter range 
m E [0, 11, U(x) in (4) describes the inviscid flow over a wedge of opening angle 
2mn/(m + 1 ), the case m = 1 corresponding to stagnation flow at a wall, and the 
case m = 0 to flow over a flat plate as discussed previously. 

Equation (5) has been the subject of much analytical and numerical study, not 
least because of the interesting multiple solutions which can exist in certain ranges 
of the parameter m. In the range m E [0, 11, the existence [6] and uniqueness [7] 
of solutions to (5) have been established. But multiple solution branches have been 
discovered numerically by a number of authors in the ranges m > 1 and m < 0. 

The latter range is interesting because it corresponds to the case of adverse 
pressure gradient. The value m = -0.0904 was determined by Hartree [S] (in what 
was the first detailed numerical study of the Falkner-Skan problem) to be the 
parameter at which zero shear stress 5, is achieved at the boundary. For this value 
of m we can write 

(10) 

and this corresponds to the case of flow separating completely along the boundary. 
This suggests that m < -0.0904 is a regime of separated flow; the physical assump- 
tions implicit to (2) may, of course, be violated if the flow is separating. 

Typically, Eq. (5) is solved by a numerical shooting method [9]; f"(0) is 
guessed, then integrated to large q in order to determine whether condition (9) is 
satisfied at infinity. For m < 0, Hartree [8] found that acceptable solutions to (5) 
could be found for an infinite number of values of f"(O), and this effectively 
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establishes the non-uniqueness of f(n) in this parameter range. Various additional 
mathematical (and physical) criteria can be imposed there, however, to restrict the 
solution space. 

For example, Hartree forced uniqueness in the regime m E [ -0.0904,0] by 
insisting that the flow solution (considered here as a function of parameter m) be 
continuous across m = 0. Furthermore, “overshoot” was excluded for physical 
reasons (which some authors have subsequently disputed [lo]); this is to say that 
the case satisfying the inequality f’(q) > 1 in q < co was excluded. In addition, the 
case of reverse flow, i.e., f”(0) < 0, was not considered by Hartree. 

As these various restrictions are relaxed, the character of the multiple solutions 
to (5) emerges. For example, reversed flow solutions in m E [ - 0.0904,0] [ 11, 121 
have been discovered, and multiple oscillatory solutions are found to exist in 
m-c -1 [lo, 131 and in m> 1 [13, 141. 

This raises a question of obvious interest: what, if anything, can these multiple 
solutions imply about physical flow. 7 It is in this connection that the time- 
dependent solutions to (2) may contribute some understanding to the similar 
solutions of (5), if the latter are interpreted as a temporal mean of the former. 

3. RANDOM VORTEX SOLUTION OF THE PRANDTL EQUATIONS 

The boundary layer equations can be expressed in terms of vorticity 5 by taking 
the curl of the vector form of Eqs. (1). Making 
and au/ax @ au/ay in the resulting equation, and 

5 = - aMjay, 
we obtain 

(12) 

the approximations &lay $ au/ax 
defining 

(11) 

Since this single vorticity transport equation expresses the two equations (la) and 
(lb) in the boundary layer approximation, we are no longer required to force any 
decoupling between momentum equations. This is to say, the pressure field in the 
boundary layer is no longer constrained to assume that of the external flow, 
although dimensional considerations still imply aplay < ap/dx. 

The random vortex sheet solution of (12) is effected by discretising the vorticity 
distribution 5 into a finite collection of vortex sheet segments (or elements). 
Detailed description of the theory of the numerical method is provided by a number 
of authors [l, 15-181. A computer program-which the present author has 
modified in order to accommodate the more general external flow field, (4), of this 
paper-has been published by Cheer [ 191. 

The basic strategy of the method is to represent the flow dynamics in the 
boundary layer by a Lagrangian description expressed in terms of discrete vortex 
sheet elements, then to solve (12) to determine the evolving displacement of each 
element. Equation (12) is solved in two fractional time steps. In the first of these the 
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segments are transported by the advective contribution in (12); in the second 
fractional step the diffusion of 5 is represented by a stochastic simulation: the 
segments are made to undergo a set of random-walk displacements. 

Consider a collection of vortex sheet segments, each of length h and of strength 
(yi} located at points {(xi, y,)}. The parameter yi is essentially the velocity jump 
across the sheet element, 

y, + 61’ 
yi= lim I1 5 dy. dy - 0 y 

The parameter h is effectively a smoothing parameter (the limit h + 0 representing 
a point vortex) which desingularises the interaction between vortices. Integration of 
Eq. (11) determines that the stream component of velocity at the point (xi, yi) is 
given by 

u(Xi, Yt)= u(Xi) + Irn r dy. (13) 
Y, 

This equation implies that the stream component of velocity of a vortex sheet 
segment at a point (xi, yi), induced by the surrounding vorticity of the flow, is 
influenced only by the vorticity distribution above it, i.e., by vortex elements located 
at vertical positions { yj} such that yj > yi. In discrete form (13) can be expressed 
by the approximation 

U(Xi, Y;) Z U(X;) + fyi+ Z)‘j dj, (14) 

where dj = 1 - Ixi - x,1/h expresses the proportionate horizontal overlap between 
sheet elements located at (xi, yi) and (xi, yi). If the downward projection of the jth 
sheet does not overlap with the sheet at (xi, y,), then, to a good approximation, it 
does not contribute to the induced velocity of the ith sheet. The summation in (14) 
can be restricted because of this, to overlapping sheets. 

The vertical component of velocity at (xi, yi) is obtained from the continuity 
condition (lc) as 

0(x;, y;) = -2 Jby’ u dy (15) 

which can be determined also in discrete form by substitution of (14) into the 
discretised integral of (15). This is expressed by the algorithm (see [ 1, 15, 161 for 
derivation details) 

vi= -(I+ +z-)/II 

where 

and d;=l-jx;&x,l:lh 

yy = min( yi, yj). 
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Note in the context of the present application, 

Having determined the velocity induced at the ith sheet element, this element is 
displaced in this field over a time step dz, by (dxj, dy,) = (u, II) dt. 

The effects of viscosity are introduced during the second fractional time step; by 
imparting to each sheet element an independent Gaussian random walk displace- 
ment in the y-direction, these displacements having zero mean and standard devia- 
tion c = (2v dt)‘/*. 

At each time-step the boundary conditions must be imposed. The no-slip condi- 
tion u(x, 0) = 0 is re-established by the creation of a vortex sheet at the boundary. 
If, upon completion of the first fractional time step, U(X, 0) = u0 # 0, then a vortex 
sheet is created at the boundary of intensity 224, per unit length. 

During the second fractional step these newly created sheets are segmented along 
the boundary. Each such segment is then represented by a number of discrete sheet 
elements (of length h) which have in summation an intensity 2u,, but which 
individually satisfy a condition yi 6 ymax. These elements are made to undergo a 
random walk in the fy direction. In order to describe this diffusion process as one 
which is isotropic, the boundary layer is formally extended into the region y < 0 
(see [ 11). During the vortex sheet creation process half the newly created vortex 
sheet elements will on average diffuse into y > 0 and half into y < 0. This effectively 
imposes the no-slip condition. Vortex elements which are displaced into the region 
y < 0 immediately after they are created are deleted from the calculation. Vortex 
elements which are subsequently displaced from the flow into the region y < 0, are 
reflected back into the flow. (An alternative vorticity creation algorithm has been 
described in Refs. [3, IS].) 

The convergence properties of random vortex methods have been investigated by 
a number of authors [3, 18, 20,211. In particular, Puckett [3] demonstrates a 
favourable dependence of the random sheet method on viscosity for the Blasius case 
and shows that this same dependence extends to Falkner-Skan flow. This is to say, 
the method does not become less convergent as v -+O. For the Blasius case, the 
relationship between the rate of convergence and the parameterization was explored 
numerically by Puckett. Error estimates were evaluated (for the flow at a particular 
instant of time) and compared for systematic permutations of parameters ymax, h, 
dt. Stream velocity was ensemble-averaged over statistically independent trials of 
the random walk simulation, and the error estimate (determined from comparison 
with the Blasius similar solution) was expressed as a discrete L’ norm. Puckett 
demonstrates that error decreases as parameters h, dt, and ymax are refined, 
provided df<ti, and h =0 (yziX). 

There are two important contributions to the numerical stability of the solution 
procedure. The leading edge, x = 0, is a singular point. Real flow at much a leading 
edge has, of necessity, a significant vertical component and this violates the Prandtl 
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boundary layer approximation. For cases m > 0 the singularity may be sufficiently 
weak [22, 231 to allow us to neglect its influence on the downstream evolution of 
the boundary layer. For the case m < 0 the external flow is in itself singular at x = 0, 
and this may affect the stability of the downstream solution. 

Similarly, the abrupt extinguishing of vorticity at a point downstream may 
introduce reverse flow and separation which can propagate upstream [ 1,5]. The 
development of this effect could manifest itself during evolution over a long time 
interval. 

The leading edge singularity for m > 0 can probably be mitigated by treating the 
neighbourhood of the edge specially using vortex core elements rather than sheet 
elements, hence solving there the Navier-Stokes equation rather than Eq. (2). 
Another approach to this problem is that of treating the upstream and downstream 
conditions as if they were periodic, invoking similarity scaling to transfer vortex 
sheets as they leave the solution domain downstream, to re-enter at a point 
upstream [3]. 

Since one purpose of the present investigation is to compare similar and non- 
similar solutions, it does not seem appropriate to impose the property of similarity 
in the non-similar solution procedure. Certainly this would complicate any com- 
parison which could be made between the two solutions. In order to address the 
problem of disposing of vortex sheets downstream, the sheets are maintained in the 
flow after they have left the solution domain along a path extrapolated from their 
motion at the downstream edge of the boundary [24]. In this way the structure of 
the boundary layer is approximated in a region beyond the downstream edge of the 
boundary. No attempt in the present work is made to try to remove the possible 
effects of the leading edge singularity. 

4. COMPARISON OF VELOCITY PROFILES 

To demonstrate the method, we consider the case of stagnation flow, that is to 
say, we consider a boundary layer subject to an external flow given by (4) with 
m = 1. Equation (12) can be made dimensionless by introducing the streamwise 
Reynolds number Re, = UoL/v, where L is a representative scale length in the 
stream direction. Equation (12) can be written 

with x’ =x/L, y’ = y/L, and t’ = tU,IL. We concentrate our attention on the range 
x’ E [0, 1.51. We consider a Reynolds number of 106, and a time-step increment of 
dt’= 0.2. We restrict the maximum strength of vortex sheet to y =O.l, h = 0.2 to 
conform to the parameters associated with Fig. 2 of Cl]. If greater vorticity is 
required to be created at the boundary to effect the no-slip condition during a time 
step, then this must be composed of a number of vortex sheet elements, each of 
strength less than or equal to 0.1. 
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FIG. 1. Stream component of velocity as a function of similarity variable q, for WI= 1 (stagnation 
flow case). Each profile (solid lines) corresponds to a 60-step time-average (dt = 0.2). The circles indicate 
the Falkner-Skan solution for m = 1. 

The stream velocity component is computed at the position x’ = 1, and this 
profile is plotted as a function of the similarity variable (6). As time progresses, the 
velocity profile is averaged in 60-step samples. The successive mean profiles 
achieved in this way are plotted in Fig. 1. The circles in Fig. 1 represent the 
stationary Falkner-Skan solution for m = 1 (from [S] ). 

The first such profile will contain the impulsive starting conditions which, by the 
time the second profile is evaluated, have begun to wash out of the solution. The 
velocity field appears to converge quite uniformly to the Falkner-Skan profile. 

Figure 2 illustrates the velocity profile generated by the random vortex procedure 
for the Blasius case, m = 0. The convergence towards the stationary solution is less 
rapid and less uniform than was the case for m = 1. This to say, the variance from 
the mean appears to be greater than in the corresponding profiles of Fig. 1. 
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FIG. 2. Same as Fig. 1 for the case m = 0 (Blasius flow case). 
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The situation can be examined in more detail by considering a longer average of 
the two random vortex solutions illustarted in Figs. 1 and 2. In order to exclude the 
initial impulsive conditions, we can take a mean from the 120th step to the 360th 
step, evaluating in both cases the variance from the mean as a function of q. Figures 
3 and 4 display a 240~step mean of the stream component and the vertical compo- 
nent for the cases m = 1 and m = 0, respectively. The open circles represent the 
respective Falkner-Skan solutions (from [ 81). 

The rms dispersion from the mean, or fluctuation intensity, is expressed as a 
function of q for both u and v in a manner analogous to the evaluation of 
turbulence intensity. In the stagnation case shown in Fig. 3 this dispersion in (u) 
reaches a maximum at q = 0.5, this maximum being some 20% of the stream 
velocity there. The dispersion falls sharply as q increases beyond v] = 0.5. 

On the other hand, the rms dispersion from the mean in the vertical component 
exceeds the magnitude of (v) in q < 1. This is perhaps to be expected, since (v) 
is two or three orders of magnitude less than (u) and would conceivably be highly 
transient near the boundary. 

The situation for the Blasius case m = 0 is illustrated in Fig. 4, where we note the 
relative broadening of the dispersion curve, the maximum reaching some 50% of 
the stream velocity in the neighbourhood of q = 1, although this falls to 7 % for 

I .oo 0.20 
0.17 

0.75 0.15 

I K 0.12 

0.50 0.10 

0.07 

0.25 0.05 

0.02 
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0.50 0.50 

0.25 0.25 

0.00 0.00 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

FIG. 3. Horizontal and vertical flow profiles ((V), ( V)) averaged over 240 time steps (dt = 0.2). 
The open circles indicate the Falkner-Skan equation. The root-mean-squared fluctuation from the 
means for the random vortex method calculation is also plotted as a function of similarity variable q. 
The case m = 1. 

581/85/l-7 
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FIG. 4. Same as Fig. 3 for the case m = 0. 

q = 4. In the vertical component we note that the magnitude of the dispersion curvt 
(~‘)L-ms exceeds the mean (v). 

As m decreases from 1 to 0, the fluctuation from the mean during the solution 
procedure increases both in magnitude and in its spread in the boundary layer. AI 
indication of this can be seen from a comparison of Figs. 3 and 4. The mean valu 
of the vertical component is notably smaller in the case m = 0 than in the cas 
m = 1, and the fluctuation from the mean is larger in the case m = 0 than in the cas 
m= 1. 

5. COMPARISON OF GROSS FLOW PARAMETERS 

The stream velocity profile can be integrated to provide two gross flo 
parameters which characterise a boundary layer. This displacement thickness 
given by 

W) = Jrn (WI - 45 Y)) 4 
0 

and the drag (or momentum defect) is given by 

e(x) = J, 4x2 Y)(UX) - 4% Y)) 4. 
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Both drag and displacement thickness can be formulated in a computationally 
efficient way in terms of the random vortex model (see [ 11). If 6 and fl are to be 
evaluated at a position X, we can consider those sheet elements in a slice of the 
boundary such that’ Ixi - XI <h. If there are A4 such elements in the slice, and if 
they are sorted and labelled so that y, < y, < ... < y,, then we can write 

6% f (u(xi)-z4i)dyi, 
i=l 

where ui is given by (14) and dy = yi- yip 1. In this way the vertical distance 
between successive sheets is exploited as an interval of integration. The drag can 
similarly be approximated by 

8 i-2 5 Ui( U(x,) - Ui) dy,. 
i=l 

The gross flow parameters determined in this way from the random vortex 
simulation can be compared to those calculated from the Falkner-Skan solutions 
the latter have been tabulated in Table 4-2 in [25], for example. 

In Fig. 5 the displacement thickness, 6, is evaluated as a succession of averages 
taken over 60 time steps, and sampled at ten 60-step intervals during a 600-step 
computation. These time averages of 6 are indicated by the open circles for the 

FIG. 5. Displacement thickness for various values of m evaluated during a 600 time-step computation. 



98 D. M. SUMMERS 

0.81 d 

0.6 

FIG. 6. Drag for various values of M during a 600 time-step computation. Each estimate (open 
circles) consists of a 60-step mean. The horizontal line represents the Falkner-Skan evaluation of drag. 

TABLE 1 

Comparison of Time-Averaged Displacement Thickness with the 
Solution to the Falkner-Skan Equation 

m RVM SD F-S 

1 0.63 1 0.04 0.648 
113 0.984 0.08 0.985 

0.1 1.32 0.1 1.348 
0.0 1.707 0.1 1.721 

- 0.05 2.12 0.2 2.117 
-0.0904 2.42 0.4 3.428 

Note. Average taken over 600 time steps, dt =O.l. SD is the 
standard deviation. 
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TABLE II 

Comparison of Time-Averaged Drag with the Similar Solution to the 
Falkner-Skan Equation 

m RVM SD F-S 

1 0.297 0.02 0.292 
l/3 0.421 0.03 0.429 

0.1 0.528 0.04 0.557 
0.0 0.659 0.04 0.664 

- 0.05 0.682 0.05 0.751 
-0.0904 0.719 0.07 0.868 

indicated values of m E [ -0.0904, 11. The horizontal lines represent the corre- 
sponding values derived from similar solutions. Fig. 6 illustrates the comparison for 
drag. 

These comparisons (see Tables I and II) demonstrate that the agreement between 
similar and random vortex solutions becomes less close as the parameter m 
becomes negative. The random vortex method evaluation of drag and displacement 
thickness departs most strongly from the similar solution at m = -0.0904. 
However, since m = -0.0904 represents the exponent at which flow becomes 
separated, it is difficult to interpret these particular gross flow parameters, which 
are, after all, intended to characterise an attached boundary layer. 

6. VISUALISATION OF BOUNDARY LAYER FLOW STRUCTURE 

The random vortex method provides a grid-free solution procedure which can, in 
principle, determine the development in time of a laminar boundary layer. For 
example, if we examine the evolving flow solutions within a regime 6 x Re;“* of the 
boundary y = 0, we find at m = 1 a relatively stable stagnation flow develops within 

6.0 
5.0 

0.0, 
0.5 1 .o 

X 

FIG. 7. Stream lines of flow for averaged flow in the case m = 1 (stagnation). 



100 D. M. SUMMERS 

6.0 

5.0 

4.0 

g 3.0 

; 2.0 

1 .o 

0.0 

0.5 1 .o 

X 

FIG. 8. Same as Fig. 7 for the case m = -0.05. 

100 time steps of start up (t = 0, dt = 0.2). As m becomes smaller on m E (1,0) the 
flow is characterised by oscillations of increasing amplitude. On m E (0, -0.0904) 
reverse flow modes develop. A statistically sensible visualisation of the boundary 
layer flow structure requires that a time average be taken over these oscillatory and 
reverse flow modes. 

Figure 7 illustrates a lOO-step average (dt = 0.2) of the flow associated with m = 1. 
The diagram is a map of the stream lines in the regime 0.25 <x < 1.5 and 
0 < y < 6 Reel’*. The character of stagnation flow has obviously evolved. Note that 
the vertical icale on this diagram is some Re’j2 greater than the horizontal scale 
and this serves to exaggerate the vertical motion for purposes of graphical visualisa- 
tion. 

Figure 8 illustrates the stream lines associated with the case m = 0.05. The vertical 
motions associated with the instantaneous oscillatory modes tend upon time 
averaging to zero. Therefore, the mean flow still appears that of an attached 
boundary layer. 

Figure 9 illustrates the stream lines associated with the case m = -0.2. Since this 
is in the parameter range m < -0.0904, from boundary layer theory we would 
expect this to be a case of separated flow. Indeed, the stream lines derived from the 
random vortex method illustrate just such a fully separated flow with a bubble of 
reverse flow along the boundary. 
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FIG. 9. Same as Fig. 7 for the case ~TI = -0.20 (separation) 
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7. CONCLUSIONS 

The random vortex method is applied with considerable success to the problem 
of Prandtl boundary layer flow subject to an external velocity of the form 
U(X) = UOxm, the stationary solution to this problem being that of Falkner-Skan 
flow. The time-averaged stream velocity profiles compare well with the similar 
solutions to the Falkner-Skan equation. The variance from the mean was also 
calculated for the random vortex method mean flows. The dependence of this 
“fluctuation intensity” on similarity variable, q, resembles qualitatively the structure 
of streamwise and vertical turbulence intensities on q (see Fig. 7-17 of Ref. [22]). 
The variances associated with the mean values (u) and (u ) increase as m decreases 
on the range m E [0, 11. In fact, the agreement between the Falkner-Skan solution 
for u and the mean (u) becomes less close as m decreases, although the similar 
solution curve lies well within the standard deviation of (u). 

The gross flow parameters of drag, 8, and displacement thickness, 6, averaged 
over successive 60-step intervals during a 600-step computation have been com- 
pared for m = { -0.0904, -0.05, 0, 0.1, 0.333, l.O} with the parameters derived 
from the Falkner-Skan solutions. These random vortex sheet averages show good 
agreement to the similar solution; again, as m becomes negative, the agreement 
with similar solutions begins to deteriorate. At m = -0.0904 (the point, according 
to analysis of similar solutions, at which the skin friction should vanish and separa- 
tion ensue) the gross flow parameters determined from the random vortex method 
are considerably less than that expected from the similar solution. 

Because the random vortex method is grid-free, it can, in principle, provide 
a flow visualisation of the dynamics in the immediate neighbourhood of the 
boundary. Although for m > 0, oscillatory structures are convected downstream, 
upon time-averaging the vertical velocities associated with them, tend to a relatively 
small mean. For m < 0, the development of separation can be observed in the 
streamline depiction of the random vortex solution: the oscillatory structures 
appear to become recirculating structures in this regime. 

The Falkner-Skan similar solution is consistent with a pressure field which 
derives its structure from the external flow. On the other hand, non-similar solu- 
tions to the vorticity representation of the boundary layer equations, as well as 
being non-stationary, are also unconstrained in their pressure field. The question of 
convergence should be understood in the context of a flow with impulsive starting 
conditions, followed by an interval of transience as the boundary layer evolves into 
a presumed steady state. The character of the fully developed flow will depend upon 
whether the time-dependent solution to equation (12) tends asymptotically to a 
flow which is strictly time steady in the limit t + co, or whether the vorticity 
dynamics of a developed boundary layer retains any essential time dependence. 

If the fully developed boundary layer is strictly time steady, then the random 
vortex sheet solution for this flow should exhibit time fluctuations associated 
entirely with the stochastic model of diffusion. An examination of the instantaneous 
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velocity field (u, u) resulting from the present vortex sheet simulation suggests a 
more complex vertical evolving flow, which nevertheless has a stationary mean. 

The notion that self-similar solutions to (2) correspond to steady states of a time- 
dependent process is an interesting conjecture [13]. In the parameter range 
m E [ -0.05, l] the numerical evidence of the present work supports this conjecture: 
the random vortex sheet solution for time-dependent boundary layer flow does give, 
in time average, a flow which approximates well the Falkner-Skan flow solutions. 
The existence of solutions to the Falkner-Skan equation which are periodic in 
space or which consist of reverse flow modes does seem to be consistent with the 
evolving flow whose dynamics, in time average, are depicted in Figs. 7-9. 

The stability of these time-dependent solutions may also be related to initial 
conditions and to conditions in the neighbourhood of the singular point x = 0. It 
is interesting to note that Serrin [23] has shown, in the context of the steady flow 
problem, that similar solutions asymptotically develop downstream, irrespective of 
conditions at x = 0. The implications of leading edge conditions to the vortex sheet 
solution of the time-dependent equations (12) for Falkner-Skan flow remains to be 
investigated. 
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